Automatic extraction of potential examples of semantic change using lexical sets
نویسنده
چکیده
This paper describes ongoing work on automatically finding candidates for semantic change by comparing two corpora from different time periods. Semantic change is viewed in terms of distributional difference with a computational and linguistically motivated approach. The data is parsed, lemmatized and part of speech information is added. In distributional semantics, meaning is characterized with respect to the context. This idea is developed from Firth (1957) and is formulated according to ‘the distributional hypothesis’ of Harris (1968). A method is developed to describe distributional behaviour in order to track semantic change over time. We will explore statistically ranked lists of verbal predicate nominal object constructions and examine differences at the level of word types.
منابع مشابه
Automatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملOn the Problem of Lexical Semantic Change
The article provides an insight into a problem of lexical semantic change. A short historical outline of the development of semantic studies is given. The authors analyze some of the most important stages in the history of the formation of this field. The existing approaches to dealing with form and meaning, namely semasiological and onomasiological ones are discussed. The authors consider the ...
متن کاملDeveloping a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity
Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...
متن کاملA Web Search Engine-based Approach to Measure Semantic Similarity between Words
Measuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an...
متن کاملA Web Search Engine-Based Approach to Measure Semantic Similarity between Words
easuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012